32 research outputs found

    Hemoglobin Is a Co-Factor of Human Trypanosome Lytic Factor

    Get PDF
    Trypanosome lytic factor (TLF) is a high-density lipoprotein (HDL) subclass providing innate protection to humans against infection by the protozoan parasite Trypanosoma brucei brucei. Two primate-specific plasma proteins, haptoglobin-related protein (Hpr) and apolipoprotein L-1 (ApoL-1), have been proposed to kill T. b. brucei both singularly or when co-assembled into the same HDL. To better understand the mechanism of T. b. brucei killing by TLF, the protein composition of TLF was investigated using a gentle immunoaffinity purification technique that avoids the loss of weakly associated proteins. HDL particles recovered by immunoaffinity absorption, with either anti-Hpr or anti-ApoL-1, were identical in protein composition and specific activity for T. b. brucei killing. Here, we show that TLF-bound Hpr strongly binds Hb and that addition of Hb stimulates TLF killing of T. b. brucei by increasing the affinity of TLF for its receptor, and by inducing Fenton chemistry within the trypanosome lysosome. These findings suggest that TLF in uninfected humans may be inactive against T. b. brucei prior to initiation of infection. We propose that infection of humans by T. b. brucei causes hemolysis that triggers the activation of TLF by the formation of Hpr–Hb complexes, leading to enhanced binding, trypanolytic activity, and clearance of parasites

    Structural basis for inflammation-driven shedding of CD163 ectodomain and tumor necrosis factor-α in macrophages

    No full text
    The haptoglobin-hemoglobin receptor CD163 and proTNF-α are transmembrane macrophage proteins subjected to cleavage by the inflammation-responsive protease ADAM17. This leads to release of soluble CD163 (sCD163) and bioactive TNF-α. Sequence comparison of the juxtamembrane region identified similar palindromic sequences in human CD163 ((1044)Arg-Ser-Ser-Arg) and proTNF-α ((78)Arg-Ser-Ser-Ser-Arg). In proTNF-α the Arg-Ser-Ser-Ser-Arg sequence is situated next to the previously established ADAM17 cleavage site. Site-directed mutagenesis revealed that the sequences harbor essential information for efficient cleavage of the two proteins upon ADAM17 stimulation. This was further evidenced by analysis of mouse CD163 that, like CD163 in other non-primates, does not contain the palindromic CD163 sequence in the juxtamembrane region. Mouse CD163 resisted endotoxin- and phorbol ester-induced shedding, and ex vivo analysis of knock-in of the Arg-Ser-Ser-Arg sequence in mouse CD163 revealed a receptor shedding comparable with that of human CD163. In conclusion, we have identified an essential substrate motif for ADAM17-mediated CD163 and proTNF-α cleavage in macrophages. In addition, the present data indicate that CD163, by incorporation of this motif in late evolution, underwent a modification that allows for an instant down-regulation of surface CD163 expression and inhibition of hemoglobin uptake. This regulatory modality seems to have coincided with the evolution of an enhanced hemoglobin-protecting role of the haptoglobin-CD163 system in primate

    Drug Trafficking into Macrophages via the Endocytotic Receptor CD163

    No full text
    In inflammatory diseases, macrophages are a main producer of a range of cytokines regulating the inflammatory state. This also includes inflammation induced by tumor growth, which recruits so-called tumor-associated macrophages supporting tumor growth. Macrophages are therefore relevant targets for cytotoxic or phenotype-modulating drugs in the treatment of inflammatory and cancerous diseases. Such targeting of macrophages has been tried using the natural propensity of macrophages to non-specifically phagocytose circulating foreign particulate material. In addition, the specific targeting of macrophage-expressed receptors has been used in order to obtain a selective uptake in macrophages and reduce adverse effects of off-target delivery of drugs. CD163 is a highly expressed macrophage-specific endocytic receptor that has been studied for intracellular delivery of small molecule drugs to macrophages using targeted liposomes or antibody drug conjugates. This review will focus on the biology of CD163 and its potential role as a target for selective macrophage targeting compared with other macrophage targeting approaches

    Plasma level of the macrophage-derived soluble CD163 is increased and positively correlates with severity in Gaucher's disease

    No full text
    Recently, soluble CD163 (sCD163) has been identified as a macrophage/monocyte-specific plasma protein and increased concentrations have been measured in patients with infection and myeloid leukaemia. In the present study we investigated the levels of sCD163 in patients with Gaucher's disease, an inherited lysosomal storage disorder characterised by hepato- and splenomegaly due to excessive accumulation of macrophages. The sCD163 plasma levels, median (25-75 percentiles), were far above the levels in normal subjects [7.1 mg/L (4.8-10.3) vs. 1.9 mg/L (1.5-2.4), P 0.0001). This study further establishes that sCD163 may be a valuable laboratory parameter in monitoring disease with increased macrophage activit

    Plasma level of the macrophage-derived soluble CD163 is increased and positively correlates with severity in Gaucher's disease

    No full text
    Recently, soluble CD163 (sCD163) has been identified as a macrophage/monocyte-specific plasma protein and increased concentrations have been measured in patients with infection and myeloid leukaemia. In the present study we investigated the levels of sCD163 in patients with Gaucher's disease, an inherited lysosomal storage disorder characterised by hepato- and splenomegaly due to excessive accumulation of macrophages. The sCD163 plasma levels, median (25-75 percentiles), were far above the levels in normal subjects [7.1 mg/L (4.8-10.3) vs. 1.9 mg/L (1.5-2.4), P 0.0001). This study further establishes that sCD163 may be a valuable laboratory parameter in monitoring disease with increased macrophage activit
    corecore